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Legion: a Distributed
Meta-Operating System

• Provides services of a traditional OS
• Process creation and control
• File system
• Security
• Resource management and accounting

• Runs on top of existing OSs
• Local systems provide the raw materials
• Legion combines the resources into a single

system (single virtual machine)

• Current version: Legion 1.7



The Object Model

• Legion is object-based
(does not mean C++)

• Legion objects:
• belong to classes
• are logically independent,

address-space-disjoint
• communicate via non-

blocking method calls
• are Active or Inert
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Shared Persistent Spaces

• Location transparent access to data and executing objects
(e.g., simulations)

• Single name space
• Usual Unix utilities, legion_ls etc.
• Files are objects - application specific interfaces

• Parallel file objects

• Manage data format heterogeneity

• C, C++, Fortran, Java interfaces - stdio and stream calls



Executing Computations

• legion_run, legion_run_multi - support
both legacy and Legion aware codes

• Legion selects site, move binaries,
monitor progress, etc.

• Parallel processing
• Bag of tasks
• Native MPI, Legion MPI, PVM, parallel

C++, Fortran (coarse-grain)



Executing an Application
(Starting an Object)
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Some Legion Capabilities

• Fault tolerance (e.g., object replication)
• Collaboration via object “sharing”

• Active simulations; Datasets

• Debugging via message replay
• General event management facilities

• Generation and publish events; Selective
subscription to events



General Grid Security

• Require standard security services
• e.g., confidentiality, authentication, access control

• But: cross-domain
• No “super-user”
• No code-base trusted by all sites

• And: large-scale
• Must assume some compromised hosts
• Require site isolation

• Legion and Globus largely agree on:
• Basic model
• Public-key cryptography as enabling technology



Key Differences Between
Legion and Globus Security

• How are public keys certified?
• How is mutual authentication achieved?
• How is authorization performed?
• How is restricted delegation achieved?



Legion Identity

• Based on Legion extensible object naming
mechanism

• Every object has an RSA public key as part of
its name
• Instead of just Public Key, it could be X.509 cert

• “Name” of object is inseparable from Public
Key



Legion Certification Structure
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Legion Certification

• A Certificate Authority should not be required
(but can be supported)

• For some installations, CA is unnecessary
• Why should some unknown entity have to be

trusted?
• Why wait for a CA to get around to responding

with the certification?
• Certification is through Web of Trust

• Though rooted in LegionClass



Legion Login
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Legion Credentials
• Single credential used for both identity and

authorization:
• Object or class restrictions
• Method restrictions
• Time restrictions

• Possession of multiple credentials imply
multiple roles

• “Login” returns unrestricted credential:
• [The bearer of this credential has all the rights of

Alice] signed Alice’s “Authentication Object”
• Legion credentials fully support restricted

delegation



Mutual Authentication

Requestee

“ Do Method M1”
Legion
credentials

Requestor

• Requestor authenticates
Requestee through Class
Object of Requestee

• Requestee authenticates
Requestor through:
• Class of Requestor
• Legion credentials are

signed by requestor’s
private key



Access Control

• Access policy locally defined and evaluated
• Method-by-method basis - MayI
• Use a standard policy or define your own

• Default: per-method ACLs based on users, groups

• Authorization based on credentials
• Delegated (restricted) credentials or bearer credentials
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Some Legion
Security Capabilities

•  “All communication in the Grid due to my
scheduling request should be encrypted.”

•  “I want to allow Alice to view the output of my
executing job in real-time.”

•  “I don’t care where you store my temporary
files associated with my job, but they must be
encrypted on secondary storage.”

•  “Schedule my job anywhere except host1,
host2, and host15, because I don’t trust them.”



Globus Security
Infrastructure (GSI)

•  OpenSSl (ssleay) provides many crypto
routines and security-related mechanisms
such as:
• RSA, DES, Triple-DES, X.509

• GSI augments OpenSSL with:
• GSSAPI binding to SSL
• Delegation (impersonation)
• Some credential management routines



GSI Certification Structure
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GSI Mutual Authentication

Requestee

“ Fork my job”

Requestor

• GSSAPI
• SSL
• Certificate Authority

• Credential Forwarding
(“delegation” via
GSSAPI/X.509)



Why run Legion over GSI?

• CA arguably “more secure” than implicit
trust in LegionClass

• Legion components and Globus
components can directly interact
• E.g., a Legion scheduling component can

access the Globus LDAP server
• But there are some downsides...



GSI Limitations

• Is mutual authentication via SSL always
appropriate?

• What about delegation?
• GSSAPI/X.509 may impede restricted delegation

(it is an authentication and message privacy API,
not a delegation/authorization API)

• Authorization info in X.509?

• What about access control?
• Does GSI mandate GAA? Does GAA add value

over Legion’s Access Control?



Legion over GSI:
Current Approach

• Base “login” to Legion on valid GSI creds
• Don’t require specific password for both

Legion and Globus
• Base process creation on valid GSI creds

• Arguably, a stronger sense of security
• Use Legion credentials everywhere else

• Retain delegation capability
• Retain Access Control capability



Legion Login via GSI
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Authentication to Legion
Host Object via GSI
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Security Standards

• Value of using GSSAPI in Legion?
• Legion user does not have to deal with

GSSAPI ugliness:
• Authentication is part of Legion

infrastructure
• Access Control is part of the Legion

infrastructure
• --> Writer of SuperScheduler in Legion can

focus on scheduling issues, not security
calls



Summary

• GSI has been utilized in Legion for:
• GSI-based session establishment (“login”)
• Enhanced security at time of process creation

• Issue: What does additional use of GSI
provide to:
• Average Legion Grid user?
• Legion installer and maintainer?

• Delegation capability is not as far along in
GSI as we need in Legion


